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SUMMARY 
In this paper a finite element method is presented to predict internal subsonic flows. Using a low-Mach- 
number approximation, the pressure is decomposed into a mean thermodynamic contribution and a 
dynamic fluctuation to deal with the complex role of the pressure in internal aerodynamics. A semi-implicit 
time integration and a finite element method with a moving mesh are described to take into account complex 
geometries and moving boundaries. An Uzawa algorithm accelerated by a preconditioned residual method is 
introduced to solve the coupled non-symmetric linear system for the velocity components and the pressure. 
An efficient conjugate gradient method combined with an incomplete LU preconditioning is used to solve the 
non-symmetric linear systems arising from the discretization. The implementation of the numerical scheme 
on parallel supercomputers is also discussed. Efficient algorithms for the finite element assembly phase and 
for the solution of linear systems are described which take advantage of the parallel architecture of the new 
generation of supercomputers. With this technique a global speed-up of 10 is achieved on a supercomputer 
with eight processors. To illustrate the capabilities of the numerical method, 2D and 3D simulations of flows 
in the combustion chamber of a reciprocating engine and around the combustor dome of a gas turbine engine 
are presented. 
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1. INTRODUCTION 

Subsonic internal flows are a subject of considerable importance in a wide variety of machinery 
components, particularly in combustion engines. In many situations of practical relevance the 
geometrical configuration is complicated, the movement of the fluid is complex since important 
recirculation zones exist, and the flow field is compressible because of variations of density with 
temperature (as in a gas turbine engine) or pressure (as in a reciprocating combustion engine). In 
order to predict such complex flows, a numerical technique based on the finite element method 
(FEM) has been proposed and is now applied successfully in our laboratory to compute a wide 
variety of such flows.'.2 

In the past decade, numerous finite element computer fluid dynamics (CFD) codes have arisen 
for solving the Navier-Stokes equations. Many of these schemes can be classified into two main 
categories depending on their fields of application (see Reference 3 and references therein). The 
first category solves the incompressible Navier-Stokes equations and is mainly used by 
mechanical engineers to predict hydrodynamic flows and shallow water or pollutant dispersion 
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problems. The main difficulties in computing these incompressible flows are (i) the treatment of the 
pressure through the continuity constraint with the so-called ‘inf-sup’ condition4 and (ii) the 
turbulence modelling. The second category includes the codes developed by aeronautic engineers 
to compute flows around an aircraft. For such flows the viscous effects are important only near the 
walls and in the wake. Elsewhere the flow can be considered as inviscid. Thus many compressible 
codes are based on Euler solvers with special treatment to capture the shock waves. 

The present numerical method tries to fill a part of the gap between the incompressible 
approach and the high-speed compressible approach. Our main motivation is the treatment of the 
pressure. Most of the compressible codes calculate the pressure as a dependent thermodynamic 
variable through the equation of state and use the same spatial approximation for all the variables. 
However, near the wall, where the local Mach number is low, the flow is nearly incompressible and 
it is well known that for the incompressible Navier-Stokes equations the pressure and velocity 
cannot be approximated inde~endently.~ Thus oscillations may appear in the numerical solution 
which are generally damped by the numerical viscosity of the scheme.’ In internal aerodynamics 
the regions of low velocity, e.g. the recirculation zones, are important and must be well predicted in 
order to calculate the pressure head losses accurately. In such regions the pressure is related to the 
velocity through the continuity equation as in an incompressible flow; therefore the numerieal 
algorithms developed for the incompressible Navier-Stokes equations are more appropriate and 
are used by some authors’. to predict compressible flows. 

In Section 2 we introduce the low-Mach-number approximation’ to cope with this complex 
role of the pressure. 

In our applications we deal with a wide range of domains, from simple academic cases to 
complicated industrial problems, with fixed or moving boundaries, and we study both stationary 
and non-stationary flows. In Section 3 we present a numerical method to simulate this class of 
problems efficiently. The major capabilities of this scheme are: 

(a) a semi-implicit time discretization to allow a wide range of time stepping (Section 3.1) 
(b) a mixed Galerkin formulation leading to a saddle-point problem’ for the treatment of the 

pressure and a finite element formulation on a moving mesh that can handle complex 
geometries with a moving frame of reference (Section 3.2) 

(c) an efficient implementation of the numerical algorithm on vector and parallel super- 
computers (Section 3.3). 

An other important capability of this scheme is the easy introduction of additional conservation 
equations related to physical models (turbulence, combustion, etc.). 

Illustrative numerical results of the flow inside combustion engines are then presented in 
Section 4. 

2. GENERAL GOVERNING EQUATIONS 

We consider the flow of a Newtonian fluid inside a domain R limited by a boundary r. Given a 
reference velocity, temperature and pressure U,, To and Po respectively, and a reference length Lo, 
we define the following non-dimensional quantities: 

for the space components x and the time t, 
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for the velocity u, the temperature T, the density p and the pressure PI 

P* 
p = - -  (2) 

T* P* 
UO’ TO’ Po(P0, To)’ PO’ 

P =  

for the physical characteristics of the fluid, i.e. the kinematic viscosity p, the diffusivity I and the 

T=-  U* u=- 

specific heat at constant pressure, C,, 

In the above definitions, star superscripts denote the dimensional quantities while zero subscripts 
denote the dimensional values at the reference point U o ,  To and Po.  

The independent dimensionless parameters appearing in the problem are the ratio of specific 
heats, y, the Prandtl number Pr, the Reynolds number Re and the reference Mach number Ma, 
given by 

where co is the speed of sound at the reference temperature. 
We decompose the total pressure P * ( x ,  t) as the sum of a spatially uniform pressure p*(t) ,  which 

takes into account the changejn the static pressure with time (i.e. the compressible part of the 
pressure), and a fluctuation II*(x,  t ) ,  which takes into account the dynamic effects (i.e. the 
incompressible part of the pressure): 

P*(x, t )=P*( t )+f i*(x ,  t )  with fi*(x, t)dx=O. (5 )  I 
The corresponding non-dimensional quantities are defined by 

and relation (5 )  becomes 

P(x ,  t )  = j ( t )  + yMa2 a ( x ,  t )  with (7) 

The governing equations are the conservation of mass, momentum and energy and the non- 
dimensional form of these equations is given by 

Du 1-b 
Dt Re 

p-= -grad l l+-divp(~-u+?T-u),  

7-1 ap  
Dt R e P r  y at‘ -- div(l9 T) + - 

The equation of state is 

p = p  with P = P + y M u 2 f i  and II=fi+Jpdivu. 
T (9) 
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In the above equations we have introduced the small-Mach-number approximation, which was 
first used by Chenoweth and Paolucci' to solve natural convection problems without the 
Boussinesq approximation. Thus in the energy equation (8) and in the equation of state (9) we have 
neglected the contribution of the dynamic pressure ?I, which is proportional to the square of the 
Mach number Ma.  This hypothesis is valid only for subsonic flows ( M a c  1) and implies that the 
speed of the pressure disturbances is greater than the velocity, allowing the definition of a mean 
thermodynamic pressure p and a dynamic fluctuation fi negligible in comparison. 

However, the separation of the pressure into a mean compressible contribution p( t )  and an 
incompressible fluctuation l?(x, t) introduces p( t )  as an additional unknown quantity. For 
incompressible flows ( M a  = 0) the mean thermodynamic pressure p ( t )  is constant. For subsonic 
flows ( M a  < 1) the definition of p ( t )  depends on the underlying physical problem. Generally, for 
internal flows with an open boundary we choose a constant pressure j ( t )  compatible with the 
external conditions, whereas for internal flows in a closed domain we use a global mass 
conservation equation, which leads to the global state equation 

where F(t) denotes a mean temperature and v(t) the volume of the domain. 
The principal advantage of the formulation (8), (9) is the ability to take into account 

incompressible flows as well as subsonic flows with an identical formulation. Consequently the 
same numerical algorithm can be used for both flows. 

3. NUMERICAL ALGORITHM 

Equations (8) and (9) are highly coupled, non-linear partial differential equations. The numerical 
approximation of this set of equations presents computational difficulties, mainly the coupling 
between the equations, the numerical treatment of the non-linearity and the determination of the 
reduced pressure n. Furthermore, the numerical method must have the capability to deal with 
complex geometries. It should allow local grid refinement to get accurate results, with better 
computer efficiency than with the use of uniform meshes. Lastly, it must take into account a 
deformation of the computational domain. Hence we choose a semi-implicit scheme for the time 
integration and a finite element method with a moving mesh for the space discretization. 

3.1. Time integration 

Let us consider a domain n(t) which deforms itself with time to take into account moving 
boundaries. We denote s(x, t) the velocity (i.e. the deformation) of each point x belonging to Q at 
time t. Let @(x, t) be a scalar field solution of the transport equation in Q(t): 

a@ + - 
p - + p u * grad @ = div(p grad @), 

at 

where p and u verify the continuity equation and p and p are strictly positive functions. 

step; we denote 
To integrate equation (1 1) in time, we use the following semi-implicit scheme. Let At be the time 

t" = n At, @" = @(x", t"), @"+ = @(x" + t" + I), p"=p(x", t"), u"=u(x", t"). (12) 

The discretized equation (1 1) is written as follows: 
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In this scheme we calculate the solution by following the deformation of the domain; hence 
W + l  is the value of @ at time t"" and at the point x"", which is the new position of the point x" 
given by 

x n + l -  n - x  + s A t .  

This scheme is first-order-accurate in time and unconditionally stable. This approach is also called 
an arbitrary Lagrangian-Eulerian formulation.' 

To integrate the system of partial differential equations (8), (9) in time, we use the preceding 
scheme, which allows the linearization of the equations. Furthermore, the energy equation (and 
other scalar transport equations) and the momentum equation can now be solved sequentially 
instead of simultaneously. Because of this segregated solution approach, the overall scheme is not 
unconditionally stable, but it retains good stability properties. 

Let us define W = [u,, u2, u3, TIT, the vector of state variables. The system of equations (8), (9) 
can be written symbolically as 

DW 
Dt 

p-=div (W (8 W))+ W (9 n)+ G (p), 

1 DP 
P Dt 

div u=---, 

where W('iW) is the tensor of viscous fluxes, H(all)  is the normal stress constraint in the 
momentum equation and G (p)  is the pressure contribution in the energy equation. 

The semi-implicit scheme is then written as follows: 

p" [ (""'b, "') + (u" -s) * 'i W"" = div uw* 8 W"" + div R (a W")+ W (9 nn + l) + G ( jn+ l), 1 
1 divu"" = --[ 1 ( pn+l A ~ p ' ) + ( u n - s ) . ~ p n + l  , 

P" 

with 

(1 7) 1 = p n +  1 f Tn+ 1 ,  

In the system (16) we have decomposed the viscous fluxes into a linear part and a residue: 

==. -,== 
W(VW)=a;VW+W(VW) with uw= 

The computational procedure is as follows. 

1. The velocity and scalar fields are known at time t". 
2. The energy equation is solved together with an equation for the mean thermodynamic 

pressure (e.g. equation (10)) to obtain T"" and p"". 
3. Using current values of temperature and pressure at time t"", we obtain the density p"+' 

from the state equation. 
4. The reduced pressure n"+l and the velocity u"+' are solved from the momentum and mass 

conservation equations by using an Uzawa algorithm which decouples the equations. 

This time discretization leads to the solution of several decoupled non-symmetric linear problems 
for the temperature, the velocity components and the pressure. 
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3.2. Finite element formulation with a moving mesh 

For the space discretization we use a finite element method whose great flexibility in choosing 
the mesh (particularly when the elements are triangles) can be exploited if the domain has an 
irregular boundary or if the solution is known to have sharp gradients in some part of the domain. 

For incompressible flows, in order to guarantee the convergence properties, the combination of 
velocity and pressure interpolation requires satisfaction of the Ladyzhenskaya-Babuika-Brezzi 
(LBB) consistency ~ondi t ion.~ This precludes in particular the use of equal-order interpolations. 
Thus we have chosen the Pl/iso-PZ element," which gives a continuous and piecewise linear 
interpolation for the reduced pressure ll associated with a continuous and piecewise linear 
interpolation for the velocity components, the temperature and the density on a grid twice as fine 
as the pressure grid (each element of the pressure mesh is divided into four triangles in 2D and into 
eight tetrahedrons in 3D). To take into account the deformation of the domain, we apply a moving 
finite element method" with imposed nodes velocities. At each node xi of the finite element mesh, 
we define the moving velocity si which is calculated by linear interpolation from the imposed 
boundary deformation. The finite element interpolation of the variables is written as 

N1 is the number of mesh points on the pressure mesh, N is the number of mesh points on the 
refined mesh and xi@) is the co-ordinate of the node i with 

dxi 
-=si. 
dt 

N ,  and Nf are the classical P1 basis functions associated respectively with the approximate 
velocity space V h  and the approximate pressure space V:.  

Discrete approximations of equations (16) and (17) are then sought using the standard Galerkin 
formulation by integration over the domain Q"+l at time t"". The discrete weak formulation is 
written: 

find WhE(Vh)4 and n h E  V: such that 

We obtain the following matrix equations for the nodal values of the velocity components u;+l, 
the temperature Tnfl and the pressure 

A11 0 0 0 51 

0 A,, 0 0 5, 
0 0 A33 0 B3 
0 0 0 A44 0 
c1 c, c3 0 0 

u"+ 1 

un+ 1 

T"+ ..+ 1 

1 
un+ 1 

2 

3 ]=[I, F4 
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which is written symbolically as 

Aii. Wi+Bi.II=Fi ,  Cis Wi=G. 

The matrices Aii are non-symmetric and time-dependent, so they must be recalculated at each 
time step. To solve the linear system of coupled equations (21), we use an iterative Uzawa 
algorithm. The mass conservation equation is interpreted as a linear constraint applied to the 
velocity u and the reduced pressure ll as the Lagrange multiplier of this constraint. Whereas many 
numerical schemes are available to solve this linear problem under linear constraint,' the iterative 
Uzawa algorithm is undoubtedly the simplest approach. It may be interpreted as an iterative 
solver of the following linear system for the pressure deduced from (21): 

A ll = B with A = C i .  A,' -B i  and B =  Ci.  A;' - F i - G .  (22) 
To accelerate the speed of convergence of the classical Uzawa algorithm, we use a minimal 
residual method with preconditioning." Whereas the matrix A is non-symmetric, its symmetrical 
part is definite positive and thus the minimal residual algorithm converges with a convergence rate 
proportional to cond(A) (the condition number of A).'3 

The pressure algorithm is described below. 

Initialization (23) 
1. no given. 
2. Compute each velocity component W? ( i  = 1,3) from 

A,,. W:= -Bi* l lO+Fi .  

3. Compute the residual of the continuity equation 

r 0 = C i *  Wf-G. 

4. Compute the descent direction 4' for I3 and Zp for Wi: 

S * go = ro, 

Aii.Z,O= -Bi.qO. 

Step k + I 
1. Calculate the optimal descent parameter p k  such that the norm of f is minimal: 

( f, Ci - z:) 
p k  = - (Ci. z:, Ci - 2:) ' 

2. Then obtain the update values for ll, Wand r: 

nk+ 1 = n' + pk . 4 k ,  

w!+l= w;+pk.z:, 

rk+ 1 = f + p k  * Ci * 2:; 

and calculate the gradient directions gk+' and Y:+' for l7 and Wi: 
s . g k  + 1 = + 1 

7 

Ai i*  Y!+l= -Bi.gk+'. 
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3. Calculate the conjugate parameter yk+'  such that ( C i . Z f ,  Ci*Zf+')=O, 

and then the new descent directions 

qk, 
z:+ 1 = y;+ 1 + y k +  1 .zf 
q k +  1 = g k +  1 + y k +  1 . 

4. If 11 ? + (1 > E, then iterate. 

In the above algorithm the matrix preconditioner S is an extension of the preconditioner 
proposed by Cahouet and Chabard14 and is defined as follows: 

With this preconditioner the convergence rate of the minimal residual algorithm is then 
proportional to cond (S- '  - A). 

Figure 1 shows a typical convergence rate of the conjugate minimal residual method with 
preconditioning for the test case of the lid-driven cavity ( N  = 289, Re = 100, Ar = 1.0). This 
algorithm is about twice as fast as the minimal residual method without the conjugate relation 
(y=O) and about 20 times faster than the classical Uzawa algorithm. 

In this scheme each iteration is computationally quite inexpensive since it requires the solution 
of three linear systems of order N (one for each component of the velocity) and two systems of 
order N1 (for the pressure preconditioning) instead of the original linear system of order 
3 ( N  + Nl). 

I t .  

Figure 1. Logarithm of the residual ? versus the number of iterations, k, for different pressure algorithms: (a) minimal 
residual method with preconditioning; (b) gradient method with preconditioning ( y  =O); (c) Uzawa algorithm without 

preconditioning 
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3.3. Solution of the non-symmetric linear system 

For large problems, especially in 3D, the computational bottleneck of the code is the solution of 
the linear systems. Thus it is important to have an efficient non-symmetric sparse matrix solver. 
For the size of problems that we want to solve (several tens of thousands of nodes for a typical 3D 
problem), direct solvers would not be viable because the factorization process would be costly in 
CPU time and the factorized matrix would require very large storage. Among the iterative 
methods, the conjugate gradient (CG) methodI5 and the multigrid (MG) methodsI6 have been 
drawing increased attention as powerful iterative solvers for large symmetric sparse systems of 
linear equations. In recent years several generalizations of the CG method have been proposed for 
solving non-symmetric linear systems. Even if none of the generalizations emerges as a clear 
winner, numerical experiments” suggest that the conjugate gradient square (CGS)’* and the 
generalized minimum residual (GMRES)” methods yield the best performances. We have chosen 
the CGS algorithm that was introduced recently by Sonneveld et al.’* It is derived from the bi- 
conjugate gradient (BCG) method.” To solve the non-symmetric linear system of order N ,  

A * X l  = B , ,  (25) 
the BCG algorithm uses a CG method applied to the symmetric (but not definite positive) matrix 
system 

The BCG residue Ri for the ith iteration can be expressed as a polynomial Oi (A) of degree i in the 
matrix A applied to the original residue R,: 

Ri = Oi(A) * R,. (27) 

The BCG method can be accelerated appreciably (roughly by a factor of two) by using the CGS 
algorithm for which the residue is 0; (A). R ,  instead of @,(A)- R,. Furthermore, it eliminates the 
need to work with AT. The CGS and the BCG algorithms converge in at most N iterations if they 
do not break down. As far as we know, there is no general theory to establish a priori if this 
condition is satisfied. However, if A is symmetric, the BCG method is equivalent to the CG 
method, which never breaks down. To improve the convergence rate of the CGS method, we use a 
preconditioner S and apply the CGS algorithm to the following problem (instead of (25)): 

S - ’ .A*X 1 -  - S - ’ . B 1 .  (28) 

For a given residue reduction E, the required number of iterations, n, of a preconditioned CG 
method is given ~lassically’~ by 

n>)lln(~/2)) cond(S-’ - A)”’. (29) 

An efficient preconditioner S is then a matrix close to A, i.e. such that cond(S-’ A) is close to 
unity. 

The simplest preconditioner is the diagonal scaling where 

S=diag(A). (30) 

Another popular preconditioner is the polynomial preconditioning, where S - is a polynomial 
in A. This technique involves only matrix-vector products and can be efficiently implemented on 
vector and parallel supercomputers.” 
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However, the most efficient class of preconditioners is the incomplete LU decomposition (ILU) 
or the modified incomplete LU decomposition (MILU) (see Reference 22 for a comparison of the 
different versions) where the matrix S is of the form 

S=IL.D.U. (31) 
IL, D and UJ are lower triangular, diagonal and upper triangular matrices respectively. They have 
the same sparsity as the original matrix A and are calculated from an incomplete Crout 
factorization of A, restricted to the non-zero elements of A. There is no general theory available 
concerning the influence of the ILU preconditioning on the condition number. However, for some 
discretizations of second-order elliptic problems one finds" 

cond(S - A) = O(h- I )  = 6(N' /2) .  (32) 
According to (29), the required number of iterations is O(N"") and the computational work per 
iteration is O(N) (two sparse matrix-vector products A - X and two solutions of sparse triangular 
systems S - ' . X ) .  This yields a computational cost of O(N5I4). This result seems to hold 
approximately for the CGS algorithm with ILU preconditioning and one finds that the required 
number of iterations increases slowly as the grid is refined. The convergence is even somewhat 
better for convection-diffusion problems.23 Figure 2 shows the convergence rate of the CGS 
algorithm with ILU preconditioning applied to the solution of a convection4iffusion equation 
(Re= 100, At=0-1,  N=968). For this test case the CGS+ILU algorithm is twice as fast as the 
BCG + ILU algorithm and seven times faster than the CGS algorithm with diagonal scaling. 

3.4. Implementation on supercomputers 

In the past decade an estimated improvement of five orders of magnitude in the cost of CFD 
simulations has been achieved" and is attributed both to the advent of high-performance vector- 
processing supercomputers and to algorithmic improvements which take advantage of the new 
architectural features of these supercomputers. Because further development of the technology of 

D 5 
0 
v l ) ,  . . . (  . ~ ,  , ~ ,  I .  I .  , I . ,  . . , , . 1 1 .  7 0 00  1 0 0  z o ' o o  3d oa 4d 0 0  sd 00  ,Of00 

I t .  

Figure 2. Logarithm of the residual Ri versus the number of iterations, i, for different iterative solvers: (a) CGS with ILU 
preconditioning; (b) BCG with ILU preconditioning; (c) CGS with diagonal scaling 
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vector computing seems unlikely to provide a large increase in performance, big gains in 
computational cost will come in the future from parallel processing or from a combination of 
parallel and vector processing. A survey of recent progress in architectures and algorithms for 
parallel scientific computing is found in Reference 24. The need to extract high performance levels 
from parallel processors causes the numerical methods and the architectures to become more and 
more interdependent. Algorithms must be developed to minimize the computational work and yet 
take advantage of these new architectures. 

Although explicit methods map well onto parallel machines and are easier to implement than 
implicit methods because they use only local information and do not involve coupling between the 
locations during the computational step, they have the drawback of poor convergence rates. On 
the other hand, implicit methods lead to better convergence rates owing to the coupling of the 
locations during the computational step, but their mapping onto parallel machines is more 
difficult. 

The present semi-implicit numerical method is i m ~ l e m e n t e d ~ ~  on a shared-memory parallel 
computer (Alliant FX/80) with up to eight vector processors (ACEs). The architecture of this 
machine allows the concurrency to be carried out at the loop level (microtasking) and the 
maximum efficiency is obtained with nested loops, where the inner loop is vectorized and the outer 
loop runs in concurrency. When implementing the implicit FEM on a parallel supercomputer, the 
two crucial points are: (i) the computation and assembly of the matrices and right-hand sides; 
(ii) the solution of the large sparse non-symmetric linear systems. 

3.4.1. Parallelization of the assembly phase. The computations of elementary matrices and 
right-hand sides (RHS) on each element of an FEM mesh are independent, but their accumulation 
at the nodes induces a dependence between adjacent elements. To achieve the parallelization of the 
assembly phase, the elements are separated into groups by using a graph-colouring algorithm so 
that two elements of the same group have no common nodes. This technique was used by Angrand 
and Erhe12' to vectorize FEM codes. In our application the assembly is performed in parallel on 
the coarse mesh, yielding larger granularity of the parallel tasks and nearly optimal speed-up on 
an FX/80 (see Table I). 

3.4.2. Parallelization of the resolution phase. When implementing the preconditioned CGS 
algorithm on a parallel supercomputer, the potential bottlenecks are in the sparse matrix-vector 
product and in the solution of the sparse triangular systems. 

To optimize the matrix-vector product Y =  A * X, we opt for a general sparse matrix data 
structure which contains only the non-zero elements of the matrix, stored row-wise. With this 
storage scheme each component Yi of the resulting vector Y can be computed in parallel as the dot 
product of the ith row of A with the vector X. This structure allows operations on vectors of nearly 
constant length (the mean number of neighbours of a node) and performs well on multivector 
processors such as the Alliant FX/8O (see Table 11). 

Table I. Percentage of CPU time and speed-up on an FX/80 with four ACEs for the different parts of the 
solution of the energy equation (3D test case, N = 16473) 

Matrix RHS Linear system ILU Total 

CPU time 65% 4 ?'o 10% 21 Yo 100% 
Speed-up 367 3.97 3.30 2,7 1 350 
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Table 11. Performance of the dot product (based on peak performance), of the matrix-vector 
product and of the solution of triangular systems on an FX/80 with one and four ACEs. The 

timing is given in microseconds per node with four ACEs 

1 ACE 4 ACEs Speed-up CPUlnode 
(MflOPS) (MflOPS) ( I 4  

Dot product 
X(i) Y(i) 20.0 80.0 4.0 0.025 
X(num(i))- Y(i) 5.0 20.0 4.0 0.1 

Sparse matrix 
Y = A . X  2.2 8.2 3.7 2.5 
S * X = B  1 .o 3.6 3.6 7.6 

Table 111. Global speed-up on an FX/80 with eight ACEs, (3D test case, 
N=9145) 

Scalar 1 ACE 2 ACEs 4 ACEs 8 ACEs 

Speed-up 1 .o 2.2 4.2 7.0 10.6 

The solution of the linear system S - X  = B, where S is the product of a lower triangular, a 
diagonal and an upper triangular matrix, suffers from a severe drawback which inhibits easy 
parallelization. It requires the solution of sparse triangular systems IL * X = B where the ith 
unknown X i  is computed sequentially using a formula which implies generally a first-order 
recurrence: 

To overcome this difficulty, we have implemented a level-scheduling a1g0rithm.l~ The idea of level 
scheduling is to look at the adjacency graph of the sparse matrix and to determine groups of 
equations that can be solved simultaneously. The nodes are grouped into levels such that the 
nodes in the same level have their predecessors only in the preceding levels. Thus all the unknowns 
X i  in the same level can be computed in parallel using relation (33). Level scheduling is a very 
efficient technique for the parallelization of the solution of triangular systems and the same speed- 
up as for the matrix-vector product can be achieved (see Table 11). However, the vectorization 
does poorly because the vector length is not constant and varies from unity to the maximum 
number of elements in the rows of IL, so that the computational cost is about three times the cost of 
the matrix-vector product (Table 11). 

Finally, we wish to give some global performance of the code concerning the speed-up, the 
CPU time and the storage requirement. Speed-up results for a 3D test problem are displayed in 
Table 111. A global speed-up of 10-6 (compared with scalar mode) is achieved on an FX/80 with 
eight vector processors (ACEs). The CPU time per time step, per variable, per node ranges from 
0 3  to 3 ms for typical 3D runs on an FX/80 with four ACEs. The memory requirement is linear 
with respect to the number of nodes and the code requires 25 words of storage per variable, per 
node. 
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4. NUMERICAL RESULTS 

In this section the pressure treatment and the moving finite element formulation are first validated 
against an analytical solution. Then 2D and 3D simulations of flows in a combustion engine and 
around the combustor dome of a gas turbine engine are presented to illustrate the capabilities of 
the numerical scheme. 

4.1.  One-dimensional compression 

To validate the pressure treatment and the moving finite element technique, we solve the 
following one-dimensional academic problem using the 2D version of our code. 

We consider the 1D compression of a Newtonian fluid in a chamber of length l(t),  with a moving 
piston having a velocity VJt). We apply Dirichlet boundary conditions for the velocity and 
adiabatic boundary conditions for the temperature (see Figure 3). 

The 1D analytic solution can be written as 

vp x2 
n (x ,  t)=--- 

2 1 2 ’  
(34) 

p(t)=E-Y, 

p ( t ) = I -  1. 

Using a mesh with 21 x 5 nodes, we have computed an approximate solution with 
Vp(t) = - 0.5 sin(t) and a time step equal to 002. In Figure 4 we have plotted the calculated velocity 
profiles along the central line at different times, which coincide with the analytical formula (34). In 
the same figure are drawn the reduced pressure profiles, which are parabolic like the exact solution 
(34). The calculated reduced pressures on the piston differ by less than 10% from the exact values. 

4.2. Flow in a combustion chamber 

To illustrate the capabilities of the scheme to calculate flows in complex geometries with moving 
boundaries, we have applied our numerical code to the simulation of the flow field within the 
cylinder of a reciprocating engine during the admission and compression strokes. 

V = O  _- dT- &,o 
dn dn 

x 
Figure 3. FEM mesh (21 x 5 nodes) and boundary conditions; 1D compression problem 



t=2.0 

Figure 4. 1D compression solution at different times: top, velocity profiles; bottom, pressure profiles. 

V a l  
P 
/ 

.s ; t  

u=vp 
v = o  

n 

Figure 5. FEM mesh (2148 nodes) and boundary conditions; 2D combustion chambe1 
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4.2.1. 2 0  configuration. The finite element mesh used for the simulation of the admission 
stroke is drawn in Figure 5. At the beginning of the computation the valve is open with a valve lift 
equal to 1 mm (the radius of the chamber is 60 mm). 

During the admission stroke the maximum valve lift reaches 12 mm for an engine speed of 
250 rev min- '. During the compression stroke the valve remains closed and the compression ratio 
is equal to 10 at the end of the stroke. The calculation begins with a velocity field initialized to zero 
and with uniform temperature and density fields. Neumann boundary conditions are used as 
inflow conditions and a no-slip velocity condition is imposed at  the wall. For the temperature, 
adiabatic conditions are prescribed. Figures 6 and 7 show the velocity fields at  different crank 
angles during the admission and compression strokes. The flow field is quite complex, with the 
formation of very large vortices during the induction which disappear during the compression. At 
the end of the compression it is interesting to notice the squish phenomenon due to the presence of 
a bowl in the centre of the piston. 

For this configuration, simulations using the same numerical scheme with turbulence modelling 
have been done. The numerical results and the comparisons with experimental data are reported 
in Reference 26. 

4.2.2. 3 0  conjiguration. We then applied the 3D version of our code to simulate flow with swirl 
in the same port-cylinder assembly, but without a piston and with a fixed valve. The mesh used for 
the formulation is drawn in Figure 8. 

Figure 9 depicts the velocity field in different planes. While the swirl component is strong in the 
entrance and in the jet near the valve, it is rapidly damped in the chamber because of the viscosity 
effects. At the outlet the velocity profile becomes parabolic without swirl. In the symmetry plane 
the structure of the flow compares with the results of the 2D simulation in the middle of the 
induction phase (Figure 6). This 3D simulation requires 100 time steps to get a stationary solution 
starting from rest. The number of iterations for the pressure algorithm ranges from 14 at the 
beginning of the simulation to one for the last time steps. The number of CGS iterations varies 

--X 

Figure 8. Perspective view of the 3D FEM mesh (41 481 nodes); 3D combustion chamber 
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from four to zero. The total CPU time of this run is 217 min on an FX/80 with four ACEs and the 
code requires 5.4 x lo6 words of storage. 

4.3. Flow around a combustor dome 

The last application is the simulation of the flow around a simplified combustion chamber of a 
gas turbine engine. This type of application is supported by the gas turbine engine manufacturer 
SNECMA and we refer to Reference 2 for industrial applications with turbulence modelling. 

4.3.1. 2 0  configuration. The geometry used for the 2D simulation is an idealized axisymmetric 
annular combustor. The FEM mesh has 1183 nodes and the boundary conditions used are given 
in Figure 10. 

The velocity field calculated for a Reynolds number of 100 is drawn in Figure 11 .  The flow field 
is quite complex, with recirculation zones and multiple outlet sections. 

4.3.2. 3D configuration. We then applied the 3D version of our code to simulate the flow in 
an annular combustor with 1 1  fuel nozzles. The 3D domain used for the simulation is drawn in 
Figure 12. We have limited the geometry to 1/1 l th of the total chamber by taking into account the 
symmetries. Dirichlet boundary conditions are applied on the inlet section and on each outlet 
section, and periodic boundary conditions are imposed on the two lateral planes. 

The velocity vector field calculated for a Reynolds number of 100 is shown in Figure 13. This 3D 
simulation requires 100 time steps to obtain a stationary solution. The number of iterations for the 
pressure algorithm ranges from 17 at the beginning of the simulation to two for the last time steps. 
The number of CGS iterations varies from three to zero. The total CPU time of this run is 152 min 
on an FX/80 with four ACEs and the code requires 2.8 x lo6 words of storage. 

u=1.0 
u=o.o 
p=o.o 

u=o.s 
v = @ . O  

u=0.5 
v=o.o 

Figure 10. FEM mesh (1183 nodes) and boundary conditions; 2D domain around a combustor dome 
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\ -  I 

Figure 1 1 .  Velocity vector field around a combustor dome (Re=  100) 

K X  

Figure 12. Perspective view of the 3D FEM mesh (22 515 nodes); 3D domain around a combustor dome 
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Figure 13. Perspective view of the 3D velocity field (Re= 100) around a combustor dome in the two symmetry planes 

5. CONCLUSIONS 

A numerical method based on a low-Mach-number approximation of the Navier-Stokes 
equations has been presented to solve subsonic flows in combustion engines. The numerical 
algorithm is based on a semi-implicit time discretization. A finite element approximation with a 
moving mesh has been introduced to deal with complex geometries and moving boundaries. A 
preconditioned Uzawa algorithm has been described for solving the coupled non-symmetric 
linear system on velocity and pressure. For the solution of the non-symmetric linear systems 
arising from the discretization, an efficient CGS algorithm with ILU preconditioning has been 
used. Efficient algorithms, such as the graph-colouring and level-scheduling algorithms, have been 
introduced to map the numerical method onto the new generation of parallel supercomputers. 
Using this technique, a global speed-up of 10 has been achieved on an Alliant FX/80 with eight 
ACES. The presented numerical results have shown the ability of the method to simulate efficiently 
internal subsonic flows in 2D or 3D configurations. This numerical method has been successfully 
applied to predict the convective instabilities in liquid metals27 and the turbulent flow inside 
combustion engines’. 26 and gas turbine engines.2 Further developments are nevertheless 
underway, particularly the introduction of a mixed finite volume/finite element formulation2* as a 
robust upwind discretization of the convective terms at high Reynolds number, and the 
introduction of a second-order time integration via a predictor-corrector scheme. 
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